Bernstein's Inequality in L^{p} for $0<p<1^{*}$

Paul G. Nevai
Department of Mathematics, The Ohio State University, Columbus, Olic 43210 and Department of Mathematics and Mathematics Research Center, Unitersity of Wisconsin,
Madison, Wisconsin 53706

Communicated by R. Bojanic
Received December 15, 1977

One of the most powerful tools in approximation theory is Bernstein's inequality,

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|T_{n}^{\prime}(t)\right|^{p} d t \leqslant C(p) n^{\rho} \int_{-\pi}^{\pi} ; T_{n}(t)^{p} d t \tag{1}
\end{equation*}
$$

which holds for $1 \leqslant p \leqslant \infty$ with $C(p)=1$. (For $p=\infty$ it should be interpreted in an obvious way.) Here T_{n} is an arbitrary trigonometric polynomial of order n. It has been shown recently in [3] that for $0<p<1$ inequality (1) still holds with some finite constant $C(p)$. Having in mind the importance of Bernstein's inequality we will give an alternative proof of (1) for $0<p<1$. Our method is not only simpier than that in [3] but aiso enables us to give a numerical estimate for $C(p)$. Using (1) we also prove waighted Markov type inequalities for algebraic polynomials.

Theorem 1. Let $0<p<1$. Then Bernstein's inequality (I) is satisfied with $C(p)=8 p^{-1}$.

Proof. Let $D_{n}(x)=\sum_{k=-n}^{n} e^{i k x}$. Then ! $D_{n}(x): \leqslant D_{n}(0)=2 n-1$. $D_{n}^{\prime}(x) \leqslant n(n+1)$ and

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{n}^{2}(t) d t=2 n \div 1
$$

If T_{n} is a trigonometric polynomial of order n, then convoluting T_{n} with D_{n} yields T_{n}, that is $T_{n}=T_{n} * D_{n}$. Hence $T_{n}^{\prime}=\vec{Z}_{n} * D_{n}^{\prime}$. Therefore we have the following two inequalities:

$$
\begin{equation*}
\left|T_{n}(x)\right| \leqslant \frac{2 n+1}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right| d t, \tag{2}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\left|T_{n}^{\prime}(x)\right| \leqslant \frac{n(n+1)}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right| d t \tag{3}
\end{equation*}
$$

\]

Now let $0<p<1$. From (2),

$$
\max _{|x| \leqslant \pi}\left|T_{n}(x)\right| \leqslant \frac{2 n+1}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} d t \max _{|x| \leqslant \pi}\left|T_{n}(x)\right|^{1-p}
$$

that is,

$$
\left|T_{n}(x)\right|^{y} \leqslant \frac{2 n+1}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} d t
$$

Thus by (3),

$$
\begin{aligned}
\left|T_{n}^{\prime}(x)\right| \leqslant & \frac{n(n+1)}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} d t\left[\max _{|x| \leqslant \pi}\left|T_{n}(x)\right|^{p}\right]^{(1-p) / p} \\
\leqslant & \frac{n(n+1)}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} d t(2 n+1)^{(1-p) / p} \\
& \times\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} d t\right]^{(1-p) / p}
\end{aligned}
$$

Hence

$$
\left|T_{n}^{\prime}(x)\right|^{p} \leqslant n^{p}(n+1)^{p}(2 n+1)^{1-p} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} d t
$$

Now let $k=[2 / p]+1$ and substitute in the last inequality $T_{n}(t) D_{n}{ }^{k}(x-t)$ instead of T_{n}. Observe that $T_{n} D_{n}{ }^{k}$ is a trigonometric polynomial of order $n(k+1)$. Therefore

$$
\begin{aligned}
& T_{n}^{\prime}(x)(2 n+1)^{k}-\left.k(2 n+1)^{k-1} D_{n}^{\prime}(0) T_{n}(x)\right|^{p} \\
& \leqslant n^{p}(k+1)^{p}[n(k+1)+1]^{p}[2 n(k+1)+1]^{1-p} \\
& \quad \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p}\left|D_{n}(x-t)\right|^{k^{p}} d t
\end{aligned}
$$

As $D_{n}^{\prime}(0)=0$ and $k p \geqslant 2$, we get

$$
\begin{aligned}
\left|T_{n}^{\prime}(x)\right|^{p} \leqslant & n^{p}(k+1)^{p}(2 n+1)^{-2}[n(k+1)+1]^{p}[2 n(k+1)+1]^{1-p} \\
& \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} D_{n}^{2}(x-t) d t
\end{aligned}
$$

Integrating this inequality, we obtain

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|T_{n}^{\prime}(x)\right|^{p} d x \leqslant & n^{p}(k+1)^{p}(2 n+1)^{-1}[n(k+1)+1]^{p}[2 n(k+1)+1]^{1-p} \\
& \cdot \int_{-\pi}^{\pi}\left|T_{n}(t)\right|^{p} d t
\end{aligned}
$$

Let m be a natural number. Apply the last inequality to $T_{n}(m x)$ instead of $T_{n}(x)$, divide by m^{p} and let $m \rightarrow \infty$. The result is

$$
\int_{-\pi}^{\pi}\left|T_{n}^{\prime}(x)\right|^{p} d x \leqslant(k+1)^{1+p} 2^{-i / n} n^{p} \int_{-\pi}^{\pi}\left|\bar{I}_{n}(t)\right|^{j} d t
$$

Recall that $k \leqslant 2 p^{-1}+1$. The theorem follows.
It would be of definite interest to determine the best value of $C(p)$.
We now establish weihgted Markov inequalities for algebraic polynomials. Denote by $p_{n}(\alpha, \beta, x)=\gamma_{n}(\alpha, \beta) x^{n}+\cdots(x>-1, \beta>-1)$, the orthonormalized Jacobi polynomials, and let

$$
K_{n}(x, \beta, x)=\sum_{j=0}^{n-1} p_{j}{ }^{2}(\alpha, \beta, x)
$$

Lemma 2. Let $\alpha>-1, \beta>-1, \gamma>-1$, nonnegative integers k, l, n, positive integer n, and $0<\epsilon<1$ be fixed. Set

$$
\begin{equation*}
P(x)=n^{-2} x^{k}(1-x)^{l}(1+x)^{n t} K_{n}(\alpha, \beta, x) K_{n}\left(-\frac{3}{2}, \gamma, 2 x^{2}-1\right) \tag{4}
\end{equation*}
$$

Then

$$
\begin{gather*}
\left|P^{\prime}(x)\right| \leqslant C_{1}|x|^{-1}\left(1-x^{2}\right)^{-1}|P(x)| \quad \text { for }|x| \leqslant 1 \tag{5}\\
0<C_{2} \leqslant|P(x)||x|^{-k+2 y+1}(1-x)^{-l+x+1 / 2}(1+x)^{-m-\beta_{+1}+2} \leqslant C_{3}<\infty \tag{6}
\end{gather*}
$$

for $\epsilon n^{-1} \leqslant|x| \leqslant 1-\epsilon n^{-2}$, where C_{1}, C_{2}, and C_{3} are independent of x and n.
Proof. First let us calculate $K_{n}^{\prime}(\alpha, \beta, x)$. By the Christoffel-Darboux formula,

$$
K_{n}(\alpha, \beta, x)=\frac{\gamma_{n-1}(\alpha, \beta)}{\gamma_{n}(\alpha, \beta)}\left[p_{n}^{\prime}(\alpha, \beta, x) p_{n-1}(\alpha, B, x)-p_{n-1}^{\prime}(\alpha, \beta, x) p_{n}(\alpha, \beta, x)\right]
$$

Hence,

$$
K_{n}^{\prime}(\alpha, \beta, x)=\frac{\gamma_{n-1}(\alpha, \beta)}{\gamma_{n}(\alpha, \beta)}\left[p_{n}^{\prime \prime}(\alpha, \beta, x) p_{n-1}(\alpha, \beta, x)-p_{n-1}^{\prime \prime}(\alpha, \beta, x) p_{n}(\alpha, \beta, x)\right]
$$

Note that $p_{n}(\alpha, \beta, x)$ satisfies the differential equation

$$
\left(1-x^{2}\right) Y^{\prime \prime}=-n(n+\alpha+\beta+1) Y \perp[\alpha-\beta+(\alpha+\beta+2) x] Y^{\prime}
$$

Therefore,

$$
\begin{aligned}
K_{n}^{\prime}(\alpha, \beta, x)= & \frac{\alpha-\beta+(\alpha+\beta+2) x}{1-x^{2}} K_{n}(\alpha, \beta, x) \\
& -\frac{\gamma_{n-1}(\alpha, \beta)}{\gamma_{n}(x, \beta)} \frac{2 n+\alpha+\beta}{1-x^{2}} p_{n-1}(x, \beta, x) p_{n}(\alpha, \beta, x)
\end{aligned}
$$

It has been shown in [2] that

$$
n\left|p_{n-1}(\alpha, \beta, x) p_{n}(\alpha, \beta, x)\right| \leqslant \mathrm{const} K_{n}(\alpha, \beta, x)
$$

for $|x| \leqslant 1$. Thus

$$
\left|K_{n}^{\prime}(\alpha, \beta, x)\right| \leqslant \operatorname{const}\left(1-x^{2}\right)^{-1} K_{n}(\alpha, \beta, x)
$$

for $|x| \leqslant 1$, which yields (5) by a simple computation. Concerning (6), see, e.g., [2, Section 6.3].

Lemma 3 [2, Section 6.3]. Let $\alpha>-1, \beta>-1, \gamma>-1$, and $0<$ $p<\infty$. Then there exists $\delta>0$ such that, for every algebraic polynomial π_{n} of degree at most n,

$$
\begin{aligned}
& \int_{-1}^{1}\left|\pi_{n}(t)\right|^{p}(1-t)^{\alpha}(1+t)^{\beta}|t|^{\gamma} d t \\
& \quad \leqslant 2 \int_{\delta, n \leqslant|t| \leqslant 1-\delta / n^{2}}\left|\pi_{n}(t)\right|^{p}(1-t)^{\alpha}(1+t)^{\beta}|t|^{\nu} d t
\end{aligned}
$$

Lemma 4. Let $0<p<\infty, 0<\epsilon<1$. Let a, b, and c be given real numbers. Then there exist constants $\delta>0$ and C_{4} such that, for every algebraic polynomial π_{n} of degree at most n,

$$
\begin{aligned}
& \int_{\epsilon / n \leqslant|t| \leqslant 1-\epsilon / n^{2}}\left|\pi_{n}^{\prime}(t)\left(1-t^{2}\right)^{1 / 2}\right|^{p}(1-t)^{a}(1+t)^{b}|t|^{c} d t \\
& \quad \leqslant C_{4} n^{p} \int_{\delta / n \leqslant|t| \leqslant 1-\delta / n^{2}}\left|\pi_{n}(t)\right|^{p}(1-t)^{a}(1+t)^{b}|t|^{c} d t
\end{aligned}
$$

Proof. If $a=b=-\frac{1}{2}$ and $c=0$, then the lemma follows from Bernstein's inequality ($1 \leqslant p<\infty$), Theorem $1(0<p<1)$, and Lemma 3. Otherwise we choose $\alpha, \beta, \gamma, k, l$, and m so that they satisfy the conditions of Lemma 2, and $a=p\left(l-\alpha-\frac{1}{2}\right)-\frac{1}{2}, b=p\left(m-\beta-\frac{1}{2}\right)-\frac{1}{2}$, and $c=p(k-$ $2 \gamma-1$). Let P be defined by (4). Then $P \pi_{n}$ is of degree $5 n+k+l+m=$ $O(n)$. Applying the case $a=b=-\frac{1}{2}, c=0$ to $P \pi_{n}$ instead of π_{n}, we easily obtain the lemma.

Lemmas 3 and 4 combined imply
Theorem 5. Let $0<p<\infty$. Let $\Gamma_{1}, \ldots, \Gamma_{N}$ be arbitrary reals, and let $1=x_{1}>x_{2}>\cdots>x_{N}=-1, \gamma_{i}>-1$. Set

$$
W(t)=\prod_{i-1}^{N}\left|t-x_{i}\right|^{\gamma_{i}},
$$

$$
W_{n}(t)=\left((1+t)^{1 / 2}+\frac{1}{n}\right)^{2 \Gamma_{1}} \prod_{i=2}^{N-1}\left(\left|t-x_{i}\right|+\frac{1}{n}\right)^{\Gamma_{i}}\left((1+t)^{1 / 2}+\frac{1}{n}\right)^{2 \Gamma_{N}}
$$

Then, for every algebraic polynomial π_{n} of degree af most n,

$$
\int_{-1}^{1} \pi_{n}^{\prime}(t)\left(1-t^{2}\right)^{1 / 2} i^{p} W_{n}(t) W(t) d t \leqslant\left. C_{5} n^{p}\right|_{-1} ^{1} \mid \pi_{n}(t)^{p} W_{n}(t) W(t) d i
$$

Where C_{5} is independent of n.
Let us remark that Theorem 5 is new only for $0<p<1$. For $1 \leqslant p<\infty$ it was proved in [2], but the present proof is much simpler than that in [2]. There is an extensive literature dealing with the case $N=2$, that is, when W is a Jacobi weight. We refer the reader to [1] where many papers on weighted Bernstein inequalities are cited.

Refrrences

1. P. Neval. Lagrange interpolation at zeros of orthogonai polynomiais, "Approximation Theory II," (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, eds.). pp. 163-201, Academic Press, New York, 1976.
2. P. Neval, "Orthogonal Polynomials," Mem. Amer. Math. Soc. 213 (1979). 1-185.
3. P. Osval'd, Some inequalities for trigonometric polynomials in the metric of E, . $0<p<1$, Ize. Vuzov 20 (1976), 65-75.

[^0]: * Sponsored in part by the United States Army under Contract DAAG29-75-C-0024. and by the National Science Foundation under Grant MCS75-06687.

