
JOURl'iAL OF APPROXIMATIO:-l THEORY 27, 239-243 (1979)

Bernstein's Inequality in LP for 0 < p < 1*

PAUL G. NEVAI

Departmef11 of Jvfathematics, The Ohio STate Universit}, COlumbus, Ohio 43210 and
Department of Afathematics and Mathematics Research Cel1ter, University of Wisconsil1,

Madison, Wisconsin 53706

Communicated by R. Bojanic

Received December 15, 1977

One of the most powerful tools III approximation theory IS Bernstein's
inequality,

r~ i T~U)lj! dt ~ C(p) /11' J" TaU) l' dt
-rr -rr

u:'
which holds for 1 ~ p ~ CX) with C(p) = 1. (For p = UJ it should be
interpreted in an obvious way.) Here Tn is an arbitrary trigonometric
polynomial of order n. It has been shown recently in [3] that for 0 < P < 1
inequality (1) still holds with some finite constant C(p). Having in mind the
importance of Bernstein's inequality we will give an alternative proof of (I)
for 0 < p < 1. Our method is not only simpler than that in [3] but also
enables us to give a numerical estimate for C(p). Using (I) we also pron~

weighted Markov type inequalities for algebraic polynomials.

THEOREM 1. Let 0 < P < 1. Then Bernstein's inequality (1) is satisfied
with C(p) = Sri.

Proof let D,,(x) = L;:~-l1 eib,. Then I D,,(x): :s: D,.(O)
I D;,(x) ~ lI(n + 1) and

2/1 --:-

If Tn is a trigonometric polynomial of order 11, then convoluting Tn with Dr.
yields Tn. that is Tn = Tn'" Dn . Hence T,; = Tn 0( D;, . Therefore we 1:J.ave
the following two inequalities:

i" I T,.(t)! dt,
",f_;r

(2)
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(3)

Now let 0 < P < 1. From (2),

that is,

Thus by (3),

I T~(x)1 < n(n2~ 1) (T I Tn(t)IP dt[m~~ I Tix)IP](1-P)/p

< n(n2~ 1) f" I Tn(t)jP dt(211 + 1)(1-P)/P

X [2~ ror I Tn(t)IP dtr-p)/p·

Hence

1 JrrI T~(x)IP ::( I1 P(n + I)P(211 + l)l-P 27T -rr I Tn(t)IP dt.

Now let k = [2Ip] + 1 and substitute in the last inequality Tit) Dn"(x - t)
instead of Tn . Observe that TnDn Ii; is a trigonometric polynomial of order
n(k + 1). Therefore

j T~(x)(2n + 1)" - k(2n + 1)"-1 D~(O) Tn(x)jP

::( nP(k + l)p[n(k + 1) + I]P[2n(k + 1) + l]l-P

.+-r I Tn(tW I Dn(x - t)lkp dt.
n -';I

As D;,(O) = 0 and kp ~ 2, we get

I T~(x)jP ::( nP(k + 1)P(2n + 1)-2[n(k + 1) + 1]p[2n(k + 1) + 1]1-P

. 2~ rrr' Tn(t)IP D n2(X - t) dt.

Integrating this inequality, we obtain

r I T~(x)IP dx ::( nP(k + 1)P(2n + l)-l[n(k + 1) + 1]P[2n(k + 1) + 1]l-P'
-rr

.fT I Tn(tW dt.
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Let 111 be a natural number. Apply the last inequality to I n (mx) instead of
T,,(x), divide by m P and let m -+ 00. The result is

r I T~(X)iP dx ,::;; (k + l)1+P 2- j 'nl' {' : Tn(t)IP dt.
-~ -IT

Recall that k ,::;; 2p-1 + 1. The theorem follows.
It would be of definite interest to determine the best value of C(p).
We now establish weihgted Markov inequalities for algebraic polynomials.

Denote by Pn(ex, (3, x) = ')In(ex, (3) x n -:- ... (.x > -1, (3 > -1), the ortho­
normalized Jacobi polynomials, and let

n-1

K,,(.x, (3, x) = I pl(ex, (3, x).
j=O

LEMMA 2. Let a > -1, (3 > -1, ')I > -1, nonnegative integers k, I, m,
positive integer n, and 0 < E < 1 be fixed. Set

P(x) = /1-2x "(1 - x)l(l --l-- x)'" Kia, (3, x) K,,(-t, y, 2x2 - 1). (4)

Then

I P'(x)1 ,::;; CI I x i-1(1 - X 2)-1 I P(x) I for I x I ,::;; 1, (5)

o < C2 ,::;; ] P(x) I : x 1-k+2y+l(l - X)-1-i-~+l/2(l + x)-m--8+1/2 ,::;; C
3

< 00

(6)

for Ell-I,::;; I x I ,::;; 1 - E/1-2, \i.,here C1 , C2 , and C,l are independent ofx and n.

Proof First let us calculate K~(a, (3, x). By the Christoffel-Darboux
formula,

K ( Q) ')In-I(ex, (3) [ '( P) ( , B ,:' n' ( Q -) (- 8 'o]
n ,x, /-', X = ')I,,,(a, (3) Pn ex, /-', X Pn-I ex, ,.,j - f/n-1 x, /-', X, Pn iX,! , XI .

Hence,

Note that Pn(rx, (3, x) satisfies the differential equation

(l - x 2
) Y" = -n(n + ex + {3 + l)Y -'- [0: - {3 + (ex + ,8 + 2)x] Y ' .

Therefore,

, ex - {3 + (ex + {3 + 2)x
Kn(ex, (3, x) = 1 _ x 2 Kn(x, (3, x)

')In-I(()(, (3) 2/1 + ex + (3 (Q) ( Q )
( Q) I _ 2 Pn-I LX, /-" X, Pn a, /-', XJ'')In ex, /-' X
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It has been shown in [2] that

n IPn-l(a, [3, x) pia, [3, x)1 ~ const Kn(rx, [3, x)

for I x I ~ 1. Thus

I K~(ex, [3, x)1 ~ const(1 - X 2)-1 K n( a, [3, x)

for I x I ~ I, which yields (5) by a simple computation. Concerning (6), see,
e.g., [2, Section 6.3].

LEMMA 3 [2, Section 6.3]. Let rx > -I, [3 > -I, y > -I, and 0 <
P < 00. Then there exists () > 0 such that, for every algebraic polynomial 7Tn

of degree at most n,

r I 7Tn(t)[P(l - t)~(l + t)8 [ t I,Y dt
-1

~ 2J I 7Tit)[P(1 - t)a(l + t)8 I t IY dt.
8/n<l f l<1-8/'tl 2

LEMMA 4. Let 0 < P < 00, 0 < E < I. Let a, b, and c be given real
numbers. Then there exist constants () > 0 and C4 such that,for every algebraic
polynomial 7Tn of degree at most n,

J [7T~(t)(l - t 2)1/2I P(1 - t)u(l + t)b I tie dt
E/n,;;!tf';;l-Ejn'

~ C4n P f I 7Tn(t)IP(l - t)u(1 + t)b I tie dt.
8jn';;l t l';;1-8jn'

Proof If a = b = - t and c = 0, then the lemma follows from
Bernstein's inequality (l ~ P < 00), Theorem 1 (0 < P < 1), and Lemma 3.
Otherwise we choose a, [3, y, k, I, and m so that they satisfy the conditions of
Lemma 2, and a = p(l - ex - t) - t, b = p(m - [3 - t) - t, and c = p(k ­
2y - I). Let P be defined by (4). Then P7Tn is of degree 5n + k + 1+ m =
O(n). Applying the case a = b = --h c = 0 to P7T n instead of 7T n , we easily
obtain the lemma.

Lemmas 3 and 4 combined imply

THEOREM 5. Let 0 < p < 00. Let T1 , ... , TN be arbitrary reals, and let
1 = Xl > X 2 > ... > XN = -I, Yi > -1. Set

N

W(t) = nit - Xi IY ;,

i=l
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Then, for ere!")' algebraic polynomial 'iT n of degree at most n,

243

.. 1 .. 1L
1

i 7<U)(l - (2)J;2 ,P Wn(t) U,7(t) dt ~ C51l1' L
1

I 'iT,,(t)j; fVn{t) Fi(r) eli.

dlere Co is independent of 11.

Let us remark that Theorem 5 is new only for 0 <: p <: 1. For 1 ~ p < J:.

it was proved in [2], but the present proof is much simpler than that in [2],
There is an extensive literature dealing with the case IV = 2, that is, when ~v

is a Jacobi 'vveight. We refer the reader to [1] where many pape~'s on weighted
BernsteiE inequalities are cited.

REFERENCES

1. P. NEVAI. Lagrange interpolation at zeros of orthogonal polynomials, "Approximation
Theory II," (G. G. Lorentz, C. K. Chul, and L L. Schumaker, eds.). pp. 163-201.
Academic Press, New York, 1976.

2. P. NEVA!, "Orthogonal Polynomials," Mem. Amer. "-lath. Soc. 213 (1979), 1-185.
3 P. OSVAl'D, Some inequalities for trigonometric polynomials in the metric of L,.

o < p < I, I::r. Vuzov 20 (1976), 65-75.


