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One of the most powerful tools in approximation theory is Bernstein's
inequality,

| imordo< cpyne | 1,0 dr (n
which holds for | <p < o with C(p) = 1. (For p = o it should be
interpreted in an obvious way.) Here 7, is an arbitrary trigonometric
polynomtal of order n. It has been shown recently in [3] that for 0 < p < |
inequality (1) still holds with some finite consiant C{ p). Having in mind the
importance of Bernstein’s inequality we will give an alternative proof of (1)
for 0 << p < 1. Our method is not only simipier than that in [3] but aiso
enables us to give a numerical estimate for C(p). Using (1} we also prove
weighted Markov type inequalities for algebraic polynomials.

TueorREM 1. Let 0 < p << 1. Then Bernstein’s inequality {1} is satisfied
with C{(p) = 8p~L.

Proof. Let Dyx) = S _, e Then | Dx} < D,0) =21 — ¢,
D{x) < i(n+1)and

pIT

5= | D) dr =2n - 1.

27 J_

If 7, is a trigonometric polynomial of order s, then convoluting T, with D,
yields 7, . thatis T, = T, x D, . Hence 7, = 7, + D, . Therefore we have
the following two inequalities:

2n + 1 i‘”

T < = [ 1Tl d,

N
N2
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Now let 0 << p < 1. From (2),

I1}1!21)( | Tx)] < 2’12_71; ! J | T(O" dt max | T (01

that is,

| To(0)|? <

2n + 1 »
e | TP

Thus by (3),

| Th(x)| < Wfﬂ | Tn(t)lpdt[ngi | To(x)|#]a-»12

s;fgggllfli7;anvdxzz+-nu~mm

1-p)/p

% [ [ 1 Tuye dt]
Hence
| Tox)|” nw+mm+ww~j|uwﬁ

Now let k£ = [2/p] + 1 and substitute in the last inequality T,(¢t) D,*(x — t)
instead of T, . Observe that T, D," is a trigonometric polynomial of order
n(k -+ 1). Therefore
| To(x)(2n + 1)* — k(2n + 1)*71 D3(0) T(x)]?
< n?(k + DP[ntk 4+ ) 4 117720k + 1) + 1}+-7

. 21_77 f_ﬂ [ Tn(t)|p [ Dn(x —_ t)ikp d[.

As D;(0) = 0 and kp > 2, we get
L T2 < otk + 1D)?Qnr + D2tk + 1) + 11PRalk + 1) + 112

o [T TP Dy — 1) di.

Integrating this inequality, we obtain
jﬂ | Thx0)? dx < n?(k + DPQ2n + D nltk + 1) + 11P[20(k + 1) + 1P

: f_’; | Tolt)]? dt.
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Let 2 be a natural number. Apply the last inequaiity to 7,{mx)} instead of
T,.(x), divide by m? and let m —> oo. The resuit is

f | T dx < (k- D227 [ T ()0 i,

—a —n

Recall that & << 2p~! 4 1. The theorem follows.

It would be of definite interest to determine the best value of C(p).

We now establish weihgted Markov inequalities for algebraic polynomials.
Denote by pua, B, xX) = v(a, By x* + - (2 > —1, f > —1), the ortho-
normalized Jacobi polynomials, and let

n—%L
_K”('X, Bs x) - Z piz(as Iga -“‘)'
Jj=0

LemMA 2. Leta > —1, B > —1, y > —1, nonnegative integers k, I, m,
positive integer n, and 0 < e < 1 be fixed. Set

Pixy = (1 — (1 + )" Ko, B, X)) K{—%, v, 232 — 1). {4}
Then
[Pl < Cylx M0 — X Px)] for [x] <1, (5)

0 < CZ < }P(x)| ix I—k+27+1(1 _ x)—l+ac+1/2(1 + x}——m—-B{—l/Z < CS <
6

Joren™t < | x| <1 — en® where C, , C, , and C, are independent of x and n.

Progf. First let us calculate K,(x, 8, x). By the Christoffei-Darboux
formula,

Koo B 3) = 22O 0 Box) s B.) — a3 B ) s B,

Hence,

K;i(,'x’ /87 .\'> — I_’ﬂ_—l(i_/g)_ [P;;(as /87 x)pn_l(ot, /g’ X) - p;fl(av ,8: —‘\')Pn(a, 185 X)}.
vn(at, B)

Note that p,(x, B, x) satisfies the differential equation
(1 —x)Y = —nn+a+B+DY+-]a—B+x+8+2x]Y.
Therefore,

e Ay

n—1(%s 2n -+
— Vy (liaﬁf) ;ijz B Pra(o, B, ) pule, B, %)

Koo B x) =




242 PAUL G. NEVAI

It has been shown in [2] that

1| Paale B, X) pule, B, x)| < const Ky(a, B, x)
for | x| < 1. Thus

| Ki(a, B, x)| < const(l — x%)1 K, (o, B, x)

for | x | < 1, which yields (5) by a simple computation. Concerning (6), see,
e.g., [2, Section 6.3].

LemMA 3 [2, Section 6.3]. Let o > —1, B> —1, y > —1, and 0 <
p << 0. Then there exists 8 > 0 such that, for every algebraic polynomial =,
of degree at most n,

fl | 7 (D120 — (1 + 18|t dt

<2 | () 2(1 — 1)1 + 1) | £ |7 .

simgt|1-8/n?

LemMa 4. Let 0 <p < o0, 0 <e <1. Let a, b, and ¢ be given real
numbers. Then there exist constants 6 > 0 and C, such that, for every algebraic
polynomial m, of degree at most n,

[ ma)A — V221 — )20+ 1) | 2 |e dt

e/ng|t|l—e/n>

< Cor 0P — 0+ 0P | £ [,
8/nglt|<1-8/n®
Proof. If a =56 = —% and ¢ =0, then the lemma follows from
Bernstein’s inequality (1 < p < ), Theorem 1 (0 << p < 1), and Lemma 3.
Otherwise we choose «, 8, y, k, I, and m so that they satisfy the conditions of
Lemma2,anda=p(l —o«—H—Lb=pm—B— % — 2,andc—p(k—
2y — 1). Let P be defined by (4). Then Pm, is of degree 5Sn + k 4 [ +m =
O(n). Applying the case a = b = —1}, ¢ = 0 to Pw, instead of , , we easily
obtain the lemma.
Lemmas 3 and 4 combined imply

THEOREM 5. Let O << p < 0. Let I7,..., I'y be arbitrary reals, and let
l=x>x > >xy=—1,y; > —1. Set

N
W(t) = H ft—x: 17,

ar; N-1

(= x1+ f;)ri((l +ope )

2

i=2

2y

W) = (1 + 02 4 )
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Then, for every algebraic polynomial w, of degree at most 1,
1 ) Py .
j P A — AR P WA W) dr << Cn? ‘ | ) ¥ W, () BWz)di.
—1 V1

where C; is independent of n.

Let us remark that Theorem Sisnewonly for0 <. p < 1. Forl <p < =
it was proved in {2}, but the present proof is much simpler than that in [2].
There is an extensive literature dealing with the case & = Z, that is, when I/
is a Jacobi weight. We refer the reader to [1] where many papers on weighted
Bernsteir inequalities are cited.
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